Coarse-Grained Models for Protein-Cell Membrane Interactions
نویسندگان
چکیده
The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes.
منابع مشابه
MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes
There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to ...
متن کاملDissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale
The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...
متن کاملStructurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration
We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec ...
متن کاملMolecular simulations of glycolipids: Towards mammalian cell membrane models
Glycolipids are key components of mammalian cell membranes, influencing a diverse range of cellular functions. For example, a number of receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR), are allosterically regulated by the glycolipid monosialodihexosylganglioside (GM3). Recent advances in molecular dynamics methods, especially the development of coarse-grained mod...
متن کاملBridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models
Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most e...
متن کامل